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INTRODUCTION

The importance of understanding interactions of ammunition components with the
gun ballistic environment is well documented. Chamber pressure-time profiles and .
levels of axial, angular, and transverse accelerations can basically describe the quality
of projectile motion during its transit in a gun tube. High frequency shot stant shocks
have proven to contribute to the premature initiation of fuzes as in the case of the
investigation of 8 inch gun in-bore ammunition malfunction.* While a number of
investigations into the origin, characterization, and control of high frequency pressure
oscillations have been conducted, no complete understanding of this phenomena
exists to date. Because of the Army’s large inventory of various configurations of
complex projectiles and fuzes, specific concerns arise over the effects of these
oscillations being coupled to projectile joints, pins, and on-board munitions (including
electronic devices). These pressure oscillations, if induced into projectiles, would not
only initiate premature fuze function as mentioned in the Navy report, but could also
cause structural failures, reduced reliability, and safety concerns.

Although the energy stored in pressure oscillations of regenerative liquid
propellant guns (RLPG) was determined by General Electric (GE) to be 0.25% of the
total energy and 1.0% of ti.e projectile energy released during the combustion event,
an analytical calculation performed by SNLL has shown that unacceptable dynamic
stresses could still occur in projectiles if oscillations in the combustion chamber are
directly coupled to base pressure oscillations near or at the natural frequencies of
projectiles. However, if a radially nonuniform input over the base of projectiles is used
in the calculation, dynamic stresses will be lower in these projectiles. Thus, there is a
need to adequately define the effects of RLPG pressure oscillations upon current
intricately designed projectiles. The measurement of acceleration levels in projectiles
and base pressure distributions, which could be used as forcing inputs to finite
element projectile models, is a significant step in accomplishing this goal.

With the experience attained through instrumented projectile firings during the
development of the 8-in. M753 and the 155-mm XM785 nuclear projectiles, the
Nuclear Projects and Artillery Branch of the Ammunition and Security Technology
Division (A&STD), FSAC at ARDEC modified existing instrumented projectile designs
to evaluate the effects of liquid propellant pressure oscillations on projectiles.
Instrumented projectiles fired during the development of the M753 and XM785 nuclear
projectile programs mainly encompassed the study of torsional impulse. These
torsional impulse studies were achieved by firing through worn gun tubes using solid
propeliants. The data obtained from these worn gun tube firings reveal the in-bore
characteristics of solid propellant gun firings. Based on these characteristics, the

* Culbertson, D.W., “Investigation of 8"/55 Gun In-Bore Ammunition Malfunction,” NWL
Technical Report TR-3150, Qct 74.




previously fired torsional impulse data has been used in comparing some of the data
obtained through instrumented projectile firings via the liquid propellant gun. In
addition to comparing previously fired torsional impulse data, RLPG instrumented
round data was also compared to LP6, which is an instrumented round fired out of tie
XM282 52 cal. tube using the solid propellant XM230-Z6 (unicharge).

Tc date, seven instrumented projectile firings have been conducted from the _
RLPG 2. The first round (LP1) was fired at GE's Maita, New York test facility on the
15th of February 1991. The remaining six rounds (LP2, LP3, LP4, LP5, LP7, and 1.P8)
were fired at Yuma Proving Ground (YPG) between February and December of 1992
as part of the General Officers Steering Committee (GOSC) program requirements. A
summary of the instrumented firings completed to date is contained in table 1. Note
that LP6 was fired out of the unicharge gun and not the RLPG. This report contains the
in-depth review of the results, data, and background lnformatlon applicable to the
conclusions gathered as a result of these firings.

BACKGROUND

A schematic of the RLPG is shown in figure 1. The system consists of a gun
barrel, a projectile, a combustion chamber, an igniter, and a set of pistons (control and
injection) which separate the liquid propellant reservoir from the combustion chamber.
The gun propellant (LGP 1846) is basically comprised of a homogeneous mixture of
nitrate salts and water. Detailed characteristics of the liquid gun propellant (LGP) are
shown in table 2. The by-products of combustion are comprised of 71% H20, 17% N,
and 12% CQO». The propellant is maintained in the proper reservoirs or chambers by
the use of seals.

To start the interior ballistic cycle, the igniter fires, pressurizing the combustion
chamber. As the propellant burns, pressure differentials cause the pistons to move
rearward which allows more propellant to be injected into the combustion chamber.
The rearward motion is controlled by hydraulics acting on the pistons. The interior
ballistic cycle is optimized by the forces from pressurization of the chamber balanced
against the forces of hydraulics and the liquid propellant reservoir. A typical pressure-
time (P-T) trace is shown in figure 2. Compared with typical P-T traces obtained from
solid propellant gun firings (fig. 3), it is apparent that an interpolation of the two P-T
traces into acceleration profiles will yield significantly different forcing functions. In
accordance with referenced documented reports, actual pressure oscillations recor-
ded in the past have shown freauencies between 5 to 50 kHz, with amplitudes
approaching 30 to 50% of the nominal steady state signal.

The RLPG 2, which was used in this test, is a completely avtomated and com-
puterized system. The gun, when setup at the Matlta, New York test facility, was
mounted on an M115 carriage and positioned to fire projectiles into an earth berm
which was completely enclosed. This test setup is represented in figure 4. The test




rounds are not recovered after each firing. As a result, recovered projectiles are
usually destroyed by the impact between previously fired projectiies and currently fired
projectiles. Because of this test setup, data from the instrumented projectile (LP1) was
of poor quality. Successive instrumented projectile firings were performed at YPG.

As stated previously, the New Development/Cannon Compatibility Section of the
A&STD at ARDEC incorporated the use of th2 torsional impulse instrumented round
PXR6353 (fig. 5) and modified its on-board telemetry packages in order to study
pressure oscillations. The PXR6353 was reconstructed with additional axial ac-
celerometers (Endevceo #7270A, fig. 3), incorporating improved shock characteristics.
The oscillatory frequency measurement capability of this design was limited to
approximately 16 kHz due to the capability of the voltage control oscillator (VCO)
employed in the telemetry package. For instrumented projectile rounds LP2 through
LP8, the PXR6353 was further reconstructed to * clude base pressure transducers
(PCB 109A12) in order to verify and complement accelerometer data. These base
pressure profiles were also needed to assist model simulators in their ongeing RLPG
interior ballistic studies.

DISCUSSION
Test Objectives

The test objectives of LP1 was to determine if projectile dynamic responses could
be induced by pressure oscillations evident in the combustion chamber.

The test objectives of LP2 and LP3 were to confirm any results obtained from LP1
and to establish the feasibility of base pressure measurements.

LP4 and LP5 objectives were to achieve a mapping of pressure oscillations
incident to the base of the arojectile during its transit in the gun.

The test objective of LF6 was to structurally qualify the modified components of
the reconfigured round to greater than 50,000 psi. L.P6 was slightly redesigned from
LP4 and LP5 to evaluate different gage port recess depths and to eliminate the use cf
a live parachute module in its ogive assembly.

LP7 and LP8 test objectives were to provide a mapping of base pressure
distributions for forcing inputs into computer modeis using 14 L of liquid propellant.
Gun tube vibration data and thermo-effects for different gage ports were also to be
evealuated.




Test Set-Up
LP1, Test location: GE’s Malta, New York test facility (fig. 4).
LP2 through LP8, Test location: Yuma Proving Ground, Yuma, Arizona (fig. 7).
Gun - 52 Cal.

Propellant charge, LP1 through LP5: 7 L; chosen based onthe data (7L and 9 L
charge P-T traces) provided by GE prior to firing LP1. The GE data provided was
interpolated for maximum pressure oscillation differentials. The 7 L charge firing was
determined to encompass higher pressure oscillation differentials for a longer period
of time versus the 9 L charge firing.

Propellant charge, LP6: XM230-Z6 unicharge solid propellant; chosen to qualify
the configuration of LP6, LP7, and LP8 to the pressure of 50,000 psi.

Propellant charge, LP7 and LP8: 14 L of liquid propellant, LGP 1846 (table 2).

Gun chamber and tube instrumentation for RLPG (fig. 8 through 10): PCB
119A02 pressure transducers were used. Many gages were replaced at YPG using
YPG tourmaline gages as PCB gages became inoperable.

Instrumented projectiles:

LP1 - Endevco 7270A accelerometers and Endevco 2264 accelerometers
(fig. 11).

LP2 and LP3 - Endevco 7270A accelerometers and PCB 109A12 pressure
transducers (fig. 12), RTV applied to protect transducer.

LP4 and ILP5 - Endevco 7270A accelerometers and PCB 109A12 pressure
transducers (fig. 13), grease applied to protect transducers.

LP6, LP7, and LP8 - Endevco 7270 accelerometers and PCB 109A12
pressure transducers installed at various recess depths (fig. 14 through 16), grease
applied to protect transducers.

Test Plan

All eight instrumented rounds were manually rammed instead of being flick
rammed as was normally done with other rounds fired out of the LP gun. Manual
ramming was recommended due to a lack of information concerning the G forces that
GE’s flick rammer could impose on projectiles during the ramming cycle. Inert M549A
projectiles were used as spotter rounds prior to fiing the LP2 through 8 test series.




Data was collected from accelerometers and pressure gauges through an FM/FM
telemetry system located inside the instrumented projectile and then transmitted by
means of a wrap around omni-directional antenna (fig. 17). The block diagram of the
data acquisition system (DAS) is shown in figure 18. Signal conditioning units
(amplifiers) were used to condition output signals from piezo-resistive accelerometers
(Endevco model 7270A-20K). These outputs are used to deviate VCO and then
multiplexed into a serial output to an S-band FM transmitter (frequency 2254.5 Mhz).
The FM signal from the instrumented projectile was received and recorded during the
test by the Physical Science Laboratory (PSL) telemetry station. At the same time, gun
barrel and chamber data were collected to correlate in-bore data and timing T0. The
block diagram of the PSL telemetry station is shown in figure 19.

Four antennae were used to collect radio frequency (RF) signals. One quarter
dipole stub antenna was aitached to the gun barrel at the muzzle.Two helix antennae
(30 deg beam width) were used, one was placed 50 ft away from-the gun and the other
was placed on top of the berm approximately 100 ft from the gun. The fourth antenna
used was a dish antenna (6 deg beam width) which was mounted on top of the roof of
the PSL telemetry van. All these antennae used RF line amplifiers (S-band) to assure
an optimum signal strength in the receiver. Four Microdyne S-band receivers were
used to receive the FM/FM telemetry signal which was then recorded on FM direct
tracks of a Racal data recorder.

Data reduction was accomplished using metraplex discriminators (MD). Analog
data output from the discriminators was converted to digital data using the 16 bit
Pacific Instrument A/D (analog to digital) convertors. The sampling rate was set to 500
Khz per channel. Digital data was processed on a personal computer using digital
signal processing (DSP) software from New Mexico State University (NMSU) PSL.
The first quick look data generated from the computer were velocities and
displacements from the accelerometers. These velocities were then compared to the
velocities obtained through the use of the Weibel and Mark V radars. Detailed
spectrum analysis was accomplished by removing D.C. offset and employing Hanning
techniques to enhance specific milliseconds of data.

For base pressure measurements, instrumented rounds LP2 and LP3 incor-
porated two different gage port mounting configurations. LP2 incorporated the 1/4 in.
single diameter through hole while LP3 incorporated the 1/16 in. double diameter
stepped hole (fig. 20). Since GE employs the use of the 1/16 in. double diameter
stepped hole in the combustion chamber, the data from the LP3 gage port mounting
hole was used to provide a comparison between ARDEC’s data with GE’'s data. LP4
through LP8 rounds incorporated the use of the 1/4 in. single diameter through holes
only. This was based on the results of LP2, LP3, and on-going gage port testing by
PCB and Sandia National Labs (SNL). For additional data, ARDEC incorporated a “G”
sensing pressure transducer into LP4 and LP5 in order to adequately assess
rotational effects due to spin on the off axis mounted pressure transducers (fig. 21).




Due to the test setup at GE's Malta, New York test facility and GE’s gun elevation
restrictions at YPG, LP1 through LP8 could not be shot vertically; therefore, the nose
deployed parachute module was not used. For rounds LP2 through LP8, GE's LP
prefire ignition system was modified. This modification required rammed instrumented
projectile rounds to remain in the gun for over 20 min minimum before firing. The
design of the basic PXR6353 used an on-board nicad battery pack with a 7 min peak
life. Because of this situation, ARDEC redesigned the projectile circuitry to incorporate
the use of an external power supply umbilical cord which overrides the use of the TM
batteries until the prefire ignition sequence was down to the 5 min countdown. This
umbilical cord was disconnected prior to firing.

Test Data

Instrumented projectile mass properties are shown on table 3. The polar (ip) and
transverse (It) moments-of-inertia were measured on a space electronics model
GB500A moment-of-inertia instrument which has a rated accuracy of +/-0.5%. The
center of gravity was measured on a 3800 in.-Ib center-of-gravity measuring
instrument which has a rated accuracy of +/-0.1 in. Assembled projectile weights were
measured on a general freedom [-4X electronic scale which has a rated accuracy of +/-
0.05 ib.

Fired projectile data (elevations, muzzle velocities, averaged chamber pressures,
and ranges achieved) are shown on table 4. Chamber pressure data was acquired by
normalizing or filtering P-T profiles obtained on each firing. The average chamber
oressures obtained from LP1 through LP5 (7 L charge) was 24,218 psi. The variations
shown may be attributed to the different firing conditions encountered at the time for
firing and the use of different gun performance parameters (i.e. damper settings).

LP1 Data

Four out of 13 channels acquired good data (table 5). Channel 3 (rear) and
6 (forward) are both axial accelerometers with the most useful data. Channel 8 and
channel 13 are accelerometers with a useable bandwidth of only 2 kHz, limiting the
oscillation analysis that can be performed from the data gathered from these two
channels. Note that channel 13 was the only Endevco model 2264 accelerometer that
survived this particular firing. This was an early indication that Endevco model 2264
accelerometers would not be applicable for pressure oscillation studies.

Detaiied accelerometer data [channel 3, rear axial accelerometer at 0 deg
(RAO) and channel 6, forward axial accelerometer at center (FAC)] are shown in
figures 22 and 23. Both plots were filtered at 16 kHz for analysis. Note the high




frequencies and high magnitudes of oscillations superimposed on the nominal
acceleration versus time plot. To further analyze and determine if these oscillations
were indeed oscillations, detailed spectrum analyses of these channels were perfor-
med and are shown in figures 24 and 25. These figures show spectrums of RAO and
FAC overlaid with presignal noise spectrums encountered before the actual firing of
LP1.

GE’s chamber pressure data and barrel gage data are shown in figures 26
through 29. The data shows typical 7 L firing characteristics. Large oscillations
produced in the chamber travel down the barrel as evidenced by the readings in the
barrel gage. Detailed spectral contents of dominant frequencies in the chamber and in
the barrel are shown on figure 29. Dominant frequencies in the chamber appear at 9
to 11 kHz, 16 to 18 kHz, and 45 to 50 kHz. Dominant frequencies in the barrel appear
to be at 20 to 24 kHz. Since ARDEC was able to monitor the barrel gage during the
firing, ARDEC’s analysis of the barrel gage data is shown in figure 30. Dominant
frequencies in the barrel coincide with GE’s analysis.

An example of accelerometer data gathered as a result of firing projectiles
out of solid propellant guns is shown on figure 31. This data was generated Septem-
ber 1990 using PXR6353 instrumented projectiles fired out of the XM284 cannon. The
purpose of this firing was to measure torsional impulse which was about to manifest as
the gun tube became worn. This accelerometer data is a plot of rear axial acceleration
(fig. 31) which is directly comparable to the rear axial acceleration (fig. 22, LP1 data).
Since the data in figure 31 is filtered at 3.2 kHz, a valid comparison can be made
between figure 31 and figure 22 only by filtering figure 31 at 16 kHz. Thus, figure 32
shows the solid propellant firing data filtered at 16 kHz. Note that presignal noise
remains constant throughout the acceleration-time profile contrary to the LP1 data
shown on figure 22.

LP2 and LP3 Data

Five out of 13 channels acquired good data from LP2 six out of 13 channels
acquired good data from LP3 (table 6).

Base pressure data (channel 1) was successfully acquire on both LP2 and
LP3. This was a major development since no measurement of base pressure was
achieved through instrumented projectiles prior to firing LP2 and LP3. The data
acquired was validated by taking accelerometer data and integrating to achieve
velocities. The applicable plots are shown on figures 33 through 36 and 38 througn
39. The detailed frequency spectrum analyses for the previously validated ac-
celerometer plots are shown in figures 37 and 40. Note that the dominant frequency
appears to be at about 6 kHz.




Sample rear accelerometer data from LP3 is shown in figure 41 and sample
forward accelerometer data from LP3 are shown in figures 42 and 43. A detailed
frequency spectrum of LP3 forward acceleration is found in figure 44. Note that the
dominant frequency is also around 6 kHz.

Detailed LP2 forward accelerometer data frequency spectrums are shown in
figures 45 and 46. Close examination of these plots indicate that the dominant
frequency occurs at or near peak pressure where projectiles see the most energy
during their interior ballistic cycle. A comparison of accelerometer data between LP1,
LP2, and LP3 are shown in figures 47 through 50. Frequency spectral data of all three
compare very well. Dominant frequencies are in the regions of 3 to 6 kHz and 9 to 11
kHz.

LP2 and LP3 base pressure data are shown in figure 51. Differences
between LP2 (through hole gage port) and LP3 (two-diameter stepped hole gage port)
are noi anparent on these plots; however, base pressure oscillations do occur on both
sets of data. Further spectrum analysis was performed and a sample is shown on
figure 52. Direct spectral comparisons are made between LP2 base pressure and
acceleration (fig. 53). Direct spectral comparisons are also made between LP2 base
pressure and LP3 accelerations (fig. 54). Note that the dominant frequencies of
acceleration coincide with the dominant frequencies of pressure oscillations as
registered by the LP2 base pressure sensor.

A comparison between LP3 base pressure spectrum and LP3 accelerometer
spectrum is shown in figure 55. It is noted that no correlation can be made between
these two sets of data. Because of this lack of correlation, chamber pressure data was
examined from LP3. Chamber pressure gage C60 is shown on figure 56 and a
comparison between C60 and LP3 base pressure is shown on figure 57. Note that
dominant frequencies between these two sets of data do correlate. This correlation,
however, only indicated that LP3 base pressure data is valid for the measurement of
the steady state pressure, but not the spectral contents of pressure oscillations.
Calculations and laboratory tests conducted by SNL have indicated that pressure
transducers mounted in two-diameter stepped gage port holes are only suitable for
measuring quasi-static pressure in solid and RLPG.

LP4 and LP5 Data

Eleven RLPG out of 13 channels acquired good data for LP4 and eight out of
13 channels acquired good data from LP5 (table 7).

Validated LP4 data is shown in figure 58. Projectile acceleration data was
integrated to obtain velocity and displacement as shown. The derived velocity was
compared to the actual measured velocity of 700.6 m/s and was determined to be off
by approximately 3%. This percentage difference can be accounted for by the
variations in the acceleration curve, validating projectile data.




Typical LP4 steady state base pressure data are shown in figure 59.
Although only four channels of data are shown, all of the seven validated base
pressure proiiles obtained show identical shapes with similar oscillating characteris-
tics superimposed onto the steady state profile.

To further demonstrate that ali LP4 steady state base pressures look similar
in shape with similar oscillating characteristics, a data overlay is shown in figure 60.
This figure is an overlay of the four plots shown in figure 59. Because of the
similarities the data was extensively magnified in order to determine if oscillations are
indeed occurring coherently in-phase or out-of-phase. A magnified slice of LP4 base
pressure data from channel 1 and channel 2 are overiaid (fig. 61). Note that many in-
phase relationships do exist.

Accelerometer data obtained from LP4 and LP5 are shown in figures 62 and
63, respectively. Since the test objectives of LP4 and LP5 were to achieve a mapping
of oscillations at the base of the projectile, all high frequency channels were used by
the base pressure transducers. This situation had limited the use of further analyzing
the data in figures 62 and 63 because the oscillatory frequency measurement
capability of these accelerometer channels were limited to 2 kHz. In either case, the
accelerometer data obtained verifies that the projectile is responding to imposed
oscillations as revealed previously by examining data gathered from LP1 through LP3.

A sample of LP5 base pressure data is shown in figure 64. This data is
similar to data obtained from LP4. Since only four base pressure channels survived
the LP5 firing, not enough data is available to adequately map oscillations based on
LP5 data alone. Thus, LP4 data is deduced to be more viable for oscillation mapping
simulations.

In analyzing LP4 data, detailed base pressure spectrums were generated
(figs. 65 through 70). The specific time windows analyzed are between 72 to 78 ms.
This time window covers the occurrence of peak pressure which is evident by ex-
amining the pressure time profiles shown in figures 59 and 60. In comparing figures
65 through 70 to themselves, several correlations are noted to exist. The first cor-
relation exists between adjacent radial gages where their dominant frequencies are
noted to be similar. The second correlation exists between the center pressure gage
(channel 1) and all circumferential mounted gages. An example of this correlation is
shown by the cross correlation plot of channels 1 and 2 in figure 71. These two
correlations imply that pressure oscillations can in fact occur coherently in-ph.se as
well as incoherently out-of-phase depending on the particular time window analyzed.

LP6 Data

Twelve out of 13 data channels survived the unicharge firing. All eight
pressure transducers and four out of five accelerometers acquired data which was
validated (table 8). This success rate indicated that projectile components fired at the




maximum unicharge environment survive favorably as compared to being fired
through the RLPG environments as seen in the resuits of LP1 through LP5S.

LP6 chamber, breech, and differential pressure are shown in figures 72
through 74, respectively. By observation, it is clearly seen that both figures 72 and 73
show smooth P-T curves, typical of data obtained from other solid propellant gun
fiings. Although these two curves, in general, represent a smooth forcing function
input, it is noted that both chamber and breech pressure traces contain kinks at various
times during the build up of peak pressure. These kinks are noted to occur at ap-
proximately 41 ms in figure 72 and 42 ms in figure 73, and they were explained to be
the result of the different burning stages of unicharge. This burning stage transition is
noted to be a normal characteristic of unicharge and its significance is only of concern
with regards to the LP6 instrumented projectile data analysis, which is discussed later.
Another noted unusual event encountered as a result of firing LP6 out of the unicharge
gun was that differentiai pressures were unusually high. They were, on the order of,
9000 psi instead of 5000 psi that is normally seen on traditional solid propellant gun
firings (fig. 74). This higher differential pressure, although deemed not catastrophic, is
again only of concern for the LP6 instrumented projectile data analysis.

A sample of typical LP6 instrumented base pressure data is shown in figures
75 through 79. Data acquired on high frequency channels are represented in figures
75, 76, and 79), hence they are filtered at 16 kHz for analysis Channels that were
acquired on low frequency channels are represented by figures 77 and 78, thus they
are filtered at 4 kHz for analysis. Data acquired from other channels which are not
shown here were analyzed similarly. By examining the presignal noise levels shown
in figures 75 through 79 and comparing them to the noise levels shown during and
after peak pressure, one can see that the data indicates that no oscillations are
induced on the base of the projectile. Although slight increases of noise levels do
occur at peak pressure, they are indicative of the high pressure differentials and the
burning stage transitions also recorded by the chamber and breech pressure data
discussed previocusly. Note that the burning stage transitions are clearly perceived by
the projectile base pressure transducers. This indicates that any slight existence of
oscillations induced by the chamber pressure would be observed by the base
pressure transducers and thus be revealed on the base pressure data.

Typical base pressure data converted to acceleration is shown in figure 80.
This figure when compared to the actual projectile accelerometer data shown in
figures 81 and 82 can be used to validate all LP6 data. The maximum axial ac-
celeration obtained by the projectile was approximately 14,000 G, which is consistent
with all data obtained during the firing. With the measured velocity and tube length
parameters, the data was validated. The derived velocity and projectile travel
deviations were determined to be within 6%. In examining figures 81 and 82, it is
noted that the base accelerometers are extremely sensitive to small changes in
acceleration levels caused by the base vibrations resulting from the burning stage
transitions and the high pressure differentials. Note that the vibrations seenin the
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base accelerometers initiate at the peak where the high pressure differentials between
the chamber and the breech exist. This indicates that the vibrations seen by the LP6
base accelerometers are not pressure oscillations, but are the base vibrations due to
the acceleration level variations. Further proof of this fact is demonstrated by ex-
amining base pressure transducer and accelerometer spectrums (figs. 83 through 85).

The base pressure and acceleration spectrums shown in figures 83 through
85 reveal that a good correlation exists between accelerometers and pressure
transducers. This correlation is evident by comparing figure 84 with figure 85. Note
that the dominant frequencies of figure 84 and 85 are identical. Also note that they are
small in amplitude and frequency indicating that they are vibration noise inputs rather
than oscillations. The data acquired from channel 1 (fig. 83) also recorded vibration
noise inputs, except that the dominant noise frequency appears to be in the region of 6
kHz. This dominant frequency difference between channel 1 and the other radially
located pressure gages may be a result of firing LP6 at higher pressures resulting in
higher base deflections at the center pressure gage location. This was confirmed by
analyzing the LP6 base for stresses and deflections using the computer software,
DYNA 3D. The analysis revealed that for a 60,000 psi input pressure the base
deflection at the center location would deflect (0.028 in.) approximately one-third more
than the amount it would deflect (0.009 in.) using an input pressure of 20,000 psi. Due
to the critical tolerances required to be maintained in installing pressure gages, it is
possible that the higher deflection somehow affected the results of the pressure gage
measurement at the center location. It is noted that for LP4 and LP5 (where the
chamber press.ure was approximately 20,000 psi) all base pressure transducer data
correiated well with each other, whereas, on LP6 all base pressure transducer data
correlated well except for the data obtained at the base center location where the
calculated base deflection was observed to be three times the base deflection of
gages mounted at other iocations. In either case, it is confirmed that the unicharge
fiing environment is not as severe as the RLPG environment based on the data
obtained from the LP6 firing.

LP7 and LP8 Data

No data was obtained from LP7 due to a failure by the telemeter mixer
amplifier. This failure was determined by doing a pestmortem on the recovered LP7
damaged hardware and problem areas were corrected prior to the firing of LP8. LP8
provided seven channeis of good data (table 8).

Typical LP8 base pressure data are shown in figures 86 through 88. As
shown by the LP4 and LPS data analysis, the LP8 data analysis shows evidence of
oscillations at the base of the projectile. Dectailed magnified plots of the peak pres-
sures shown in figures 86 through 88 are shown in figures 89 through 91 respectively.
An overplot was performed in figure 92 in order to evaluate the data for any in-phase
coherent or out-of-phase incoherent oscillation introduced onto the base of the
projectile. Note again that many in-phase coherent oscillations exist at the base of the
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projectile as well as many out-of-phase incoherent oscillations exict. This precludes
any statement that declares that oscilations are totally random or that they act in
unison. Again, the coherence of oscillations appear to be totally dependent upon the
time sequence in question.

An example of LP8 measured projectile acceleration is shown in figure 93.
Note that the projectile response to pressure oscillations shown in LP1 through LP5 is
reproduced during the firing of LP8. Similarly, all of the data from LP8 was validated
by integrating figure 93 to obtain a velocity and displacement - time plot which is
shown in figure 94. The comparison of the actual veiocity of 935.4 m/s to the
measured velocity of 983 m/s resulted in an acceptable percentage difference of 6%,
thereby, validating all LP8 projectile data.

The spectrum analysis of the accelerometer and base pressure data shown
in figures 86 through 88 and 93 are shown in figures 95 through-98. The specific time
window analyzed is again in the vicinity of peak pressure. It is noted that the dominant
frequencies obtained are high in magnitude, especially when compared to the LP6
spectrum data shown previously. This ciearly indicates that oscillatioris are being
introduced into the projectile. By close examination, it is visually apparent that a good
correlation exists between accelerometer data and data acquired by means of radial
located base pressure transducers. It is a'so apparent that the center base pressure
transducer does not correlate well to the radially mounted pressure transducers or the
accelerometers. This is evidenced by noting the different dominant frequencies
shown. Again, this phenomenon was observed on LP€. This result may be the cause
of an effect introduced by the same base deflection event which was postulated to
occur during the firing of LP6. However, since the occuirence of spatial distributions of
oscillations do transpire, the data obtained from the center pressure gage must not be
ignored and is considered to be valid data. It is, therefore, conceivable that the
oscillations recorded at the center base pressure gage location do dominate at a
frequency of approximately 14 kHz during the occurrence of peak pressure. Because
of this difference of dominating frequencies, it is speculated that impinging pressure
oscillations affect specific areas of the base differently.

Since the data from a single diameter through hole port mounted pressure
transducer gage was operational on the LP3 firing, the data obtained was used in
comparing the data from the LP8 instrumented projectile. This single diameter through
hole mounted pressure transducer gage was designated on the gun as the B200B
gage (PCB 119A, location shown on figure 99) and its data are shown in figure 100. A
detailed spectrum analysis was performed at peak pressure and it is shown on figure
101. Note that the dominating frequency is approximately 8 kHz ditferent from
previously shown LP8 instrumented projectiie data (14 kHz at the center of the base
and 6 kHz at the outer areas of the base). Judging by the location and orientation of
the B200B pressure transducer, this dominant frequency difference also substantiates
the speculation that impinging pressure oscillations affect areas of the gun chamber
differently.
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In addition to acquiring LP8 projectile data and B200B pressure transducer
data, barrel accelerometer data was also acquired. The barrel accelerometer used on
this test was an Endevco model 7270 - 60 K piezoresistive accelerometer and it was
located approximately 120 in. from the muzzle end (fig. 99). The data that was
acquired is shown on figure 102 and its detailed specirum analysis is shown on figure
103. In comparing the dominant frequency of the barrel accelerometer to projectile
accelerometers, one will note that no correlation can be made between the projectile
acceleration and the barrel accelerometer vibrations, indicating that the oscillations
recorded by the projectile are not introduced by the barrel vibrations.

Further evidence that the oscillations are not introduced through the barrel
are shown by analyzing the LP8 data accounting for doppler effects. In performing the
doppler shift analysis, two pressure gages were examined and compared to one axial
accelerometer. The two pressure gages were monitored on channel 1 and 2 (BP0OA
and BP180A). The accelerometer was monitored on channel 7 (FA315). Detailed
spectrum analyses were performed between 52.66 ms and 57.33 ms on all three
channels of data. A sample of this is shown on figures 104 through 111. The tracking
of the dominant frequency is plotted for each channel and shown in figure 112. This
plot again indicates that base pressure transducers correlate well to projectile
accelerometers. The doppler effect is calculated for the gas phase and the gun barrel
flexual wave and compared to the plotted dominani frequency doppler shifts of the
projectile data. This data is all plotted and shown in figure 113. Clearly, it is observed
that the doppler shift tracks the gas phase more so than the barre! vibration flexual
wave, indicating that the projectile oscillations are introduced into the projectile
through the base.

Although it was demonstrated above that the data obtained from LP8 is
significant in characterizing pressure oscillations, it had been argued that the data is
not representative of a true 14 L RLPG firing. This argument is supported by the
results of the data itself in \ “ic* peak pressures were noted to climb only to ap-
proximately 38,000 psi instead of about 50,000 psi. Even with this fact in mind though,
there is still no doubt that pressure oscillations affect projectiles during the firing of the
RLPG. Higher charges have the capability of increasing the oscillation amplitudes
when compared to the steady state amplitudes. This condition is illustrated in figures
114 and 115). These increases in oscillations amplitudes are indicative of potential
failures which could occur during the firing of other more sensitive projectiles.

CONCLUSIONS

Based on analysis of the data obtained from LP1 through LP5, the measured
projectile spectral responses conclusively indicate that pressure oscillations inherent
in the chamber of Regenerative liquid propellant guns (RLPG) are induced into the
base of the projectiles during firing. The high level peaks measured at the 3 to 6 kHz
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and 9 to 11 kHz regions have been verified and validated based upon chamber
pressure data and in-bore projectile data. It is noted that these high level peaks are
larger in magnitude at the rear of the projectile rather than at the front of the projectile.
This difference can be expiained by attenuation of the pressure oscillations resulting
from the many mechanical interfaces between the input source, accelerometer
locations, mounting interfaces in the instrumentation package, and projectile motion
down the gun tube. Examinations of the recovered projectile hardware in conjunction
with data analyses indicates that the effects of these pressure oscillations are more
severe on the rear of the projectile as evidenced by the fact that base and rear
mounted accelerometers nad a much higher mortality rate than did the forward
mounted accelerometers.

Results of LP2 and LP3 indicate that oscillations are probably introduced into the
projectile through the base. The fact that LP2 base pressure measurements correlated
well with accelerometer data obtained from both LP2 and LP3 -supports this finding.
Another finding discovered as a result of firing LP2 and LP3 was that siight differences
could exist between oscillations in the chamber and osciilations introduced on the
base of the piojectile. In addition, data from LP2 and LP3 indicate that pressure
measurements obtained by pressure transducers mounted in two diameter stepped
through holes are quite different from pressure measurements acquired by single
diameter through hoes. Data from LP2 and LP3 clearly shows that the two diameter
stepped through hole port used in LP3 does not correlate well with the in-bore
projectile accelerometer data while the single diameter through hole port used in LP2
does correlate well with in-bore projectile accelerometer data. As a result of this
finding, LP4 and I P5 firings incorporated the use of the single diameter nrough hole
pressure transducer mounting port configuration.

Results from LP4 and LPS5 indicate that a uniform steady state base pressure
forcing function exists throughout the base; however, detailed data analysis revealed
that oscillations are still inherent within this forcing function. Coherent in-phase
oscillations as well as some incoherent out-of-phase oscillations were noted to exist.
Cross correlation plots were generated to further indicate that significant in-phase
relationships between channel 1 and channel 2 of LP4 does exist. Detailed Fourier or
spectrum analysis of LP4 and LP5 base pressure signals also indicates and confirms
the presence of oscillations in the 3 to 6 kHz and 9 to 11 kHz region. Tangential
components due to spin were not conclusively encountered to be a factor in con-
tributing to pressure transducer data inputs; however, thermo-effects cannot be
conclusively quantified to occur prior to projectile peak acceleration, thus they are
speculated to occur sometime between projectile peak acceleration and gun exit.
Detailed spectrum analysis of the data acquired from pressure transducers with
thermo-effects compared to data withcut thermo-effects supports the above
hypothesis.
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Results of LP6 through LP8 have reconfirmed that oscillations exist at the base of
the projectile in RLPG firings and not in solid propellant gun firings. As seen by the
success of the firings, the objectives of LP6 were met, but due to the partial lack of
success encountered during the LP7 and LP8 firings, not enough data exists to date
which can be used to describe adequately the effects of pressure oscillations on
projectiles from a 14 L charge. The data that was obtained is significant, however,
since it can be used to develop a base pressure profile for use in modeling projectile
responses. The data can be extrapolated to a full performance firing with experimental
projectile oscillations superimposed on their mean pressures. This approach is
currently being implemented by the Army Research Laboratory. The major results of
the data gathered from LP8 to date indicate that the oscillations are introduced into the
projectile through: the base and that the conclusions gathered from the LP1 through
LPS firings are justifiable. It is expected that further data will be available in the near
future in order to adequately describe pressure oscillations so that they will no longer
be a concern. .

In retrospect, the objectives of LP1 through LP6 were satisfied and the results of
these firing indicated that the initial concern expressed by projectile designers and
fuze developers was justified. Based on the amount of data obtained to date, the wide
range of resonant frequencies of artillery projectile components still indicate that the
effects of oscillations cannot be ignored. The firing of instrumented projectiles such as
LP1 through LP8 are only one of the many tools used in characterizing pressure
oscillations; however, they are one of the best tools that provide actual in-bore data
which can further be used by the modeling community for a better assessment of the
effect of real pressure oscillations on projectiles.

RECOMMENDATIONS

It is noted that in order to characterize pressure oscillations adequately, more
instrumented projectile firings must be conducted. Continued instrumented projectile
firings using 9 L and 14 L of propellant should be conducted. This would provide a
broader data base for oscillation characterization. In addition to acquiring more
detailed rata, it is recommended that aill aspects of data acquisition be reinvestigated
and reevaluated in order to eliminate many of the variables which affect the data from
shot to shot. One major problem encountered in analyzing data from LP2 through LP5
was the fact that chamber pressure data was monitored by pressure transducers
mounted in two diameter stepped recess through hole ports while projectile pressure
transducers are mounted in single diameter recess through hole ports. For this
reason, a comparison made between chamber pressure data and base pressure data
is not valid. The addition of using different thermoprotective materials such as grease
or RTV and different gauges with different frequency sensitivities further complicates
the problem of performing a comprehensive characterization of osciilations as they
propagate and change through the gun chamber and into the gun barrel as well as on
the base of the projectile.
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Future instrumented projectiles are currently being designed to simulate rounds
such as the M864, which is more intricately designed and perceived to be highly
complex, incorporating base propellant and combinations of M42/M46 dual purpose
grenades. These improved instrumented projectiles are also being designed to
incorporate updated voltage control oscillators and higher frequency accelerometers
that can measure oscillations up to 50 kHz. A design incorporating a fuze instrumen-
tation package is also being investigated in order to acquire vibration data at the fuze
location. The data gathered as a result of future test firings out of the regenerative
liquid propellant gun as well as out of standard solid propellant guns using these new
and improved instrumented projectiles will provide the research and development
community with a better characterization and assessment of pressure osciliations.
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Table 1. Instrumented projectile firings LP program

ROUND LOCATION DATE
LP1 MALTA, N.Y. 2-15-91
LLPZ YPG, AZ. 2-28-¢2
LP3 YPG, AZ. 3-03-92
LP4 YPG, AZ. 5-20-92
LP5 YPG, AZ. 5-30-92

® LP6 YPG, AZ. 11-5-92
LP7 YPG, AZ. 12-10-92
LP8 YPG, AZ. 12-17-92

® NOTE: SOLID PROPELLANT FIRING (UNICHARGE)

Table 2. Liquid gun propellant (LGP) 1846

Homogereous Mixture of Nitrate Salts and Water

Descrinti
Combines both a fuel and an oxidizer in a stoichiometric mixture
Product of Combustion: 71% H20, 17% N2, 12% CO2
Eormulation Hydroxyl Ammonium Nitrate (HAN) 60.8%
Triethanol Ammonium Nitrate (TEAN)  19.2%
Water 20.0%
Characteristics | Loading Density 1.43 gm/cc
Volumetric Impetus 1290 j/cc
Flame Temperature 2470 deg K
Freezing Point -100deg C
Flammability LOW
Shock Sensitivity LOW




Table 3. Instrumented projectile mass propenties

'ROUND| WEIGHT C.Gu.A Ip (Ib-in®) |it (Ib-in®)
LP1 94.5 b 12.206 in 488.567 5419.294
LP2 95.05 b 12.17in 488.7 5345.0
LP3 95.1 Ib 12.18in 4885 5368.0
LPg * 95.6 Ib 11.30in 4845 5883.0
LPs <  9571b 11.30in 484.6 5887.0
LP6 96.4 b 11.31 in 492.8 5914.0
LP7 96.55 Ib 11.381in 488.7 6066.3
LP8 96.55 Ib 11.38in 488.9 6074.1

A MEASURED FROM BASE OF PROJECTILE

* Mass Properties performed with Dummy M73 Fuze
Equipment: Ip & It measured on Space Electronics Model GBS00A, accuracy+/-0.5%

C.G. measured on 3800 in-Ib Center-of-Gravity Measuring instrument accuracy +/-0.1 in
Projectile Weights measured on Galaxy 1200 Eiectronic Scale accuracy +/-0.05 b

Table 4. Instrumented projectile firing data summary

LP1 MALTA, N.Y. 0 6.9 684 22000 * N/A

LP2 YPG, AZ. 690 7.1 7255 | 258024 20545
LP3 YPG, AZ. 690 7.1 733.4 | 29660A 20980
LP4 YPG, AZ. 470 7.1 7006 | 214658 16892
LP5 YPG, AZ. 374 7.1 7086 | 22161® 15398
LP6 YPG, AZ. 308 XM220Z6 | 942.8 | 51zus® 20375
LP7 YPG, AZ. 1173 142 ]| o485 | 42081 ® 26142
LP8 YPG, AZ. 801.3 142 {9354 | 38061 ® N/A

* NORMALIZED ARDEC DATA
A FILTERED DATA PROVIDED BY G.E.
B FILTERED DATA PRCVIDED BY YPG.
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Table 5. LP1 accelerometer validated data

Channel Gage Accelerometer
Type
3 RAO 7270
6 FAC 7270
8 FT225 7270
13 FA225 2264

Table 6. LP2 and LP3 validated acceleromete

nd pressure data

ROUND LP2 ROUND LP3
CHANNEL GAGE TYPE CHANNEL GAGE TYPE
1 BPC PRESS 1 BPC PRESS
5 RA270 AXIAL 5 RA270 AXIAL
6 FAC AXIAL
6 FAC AXIAL
7 FA315 AXIAL
8 FA135 AXIAL 9 FT45 TANG
7 FA315 AXIAL 10 FT225 TANG

ACCELEROMETERS = ENDEVCO 7270
PRESSURE TRANSDUCERS = PCB109A12
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Table 7. LP4 and LP5 acquired data

ROUND fRESSURE ACCELEROMETER
CHANNELS CHANNELS
1! 2! 4’
LP4 5.6, 7 &8 10,11, 12, 13
LP5 1,2,5, &7 9, 10,12, 13

BASE INSTRUMENTATION PACKAGE
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FORWARD INSTRUMENTATION PACKAGE
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Figure 1. Regenerative liquid propellant gun (RLPG)
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Figure 2. Chamber pressure, 7-L, 155-mm gun
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TELEMETER FORWARD ACCELEROMETER

. NOSE PARACHUTE SYSTEM
-GPSR ol L AN
= | T /
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Y 3 o
REAR ACCELEROMETERS ANTENNA

PXR 6353 TEST PROJF.C:I‘ILE

Figure 5. 155-mm instrumented in-bore vehicle
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GAUGES FM TELEMETRY SYSTEM AV :

B

T
I
13
Figure 17. Projectile telemetry system
FM TELEMETRY SYSTEM
s.C.U. V.C.0. mxer | | TRANS |
113 CH.1-186 AMP. 2954 5 :

28 V BATTERY RECHARGEABLE Ni-Cad

Figure 18. FM telemetry system in projectile
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Figure 19. Telemetry station
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Figure 26. GE C60 chamber pressure data shot 81
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Figure 27. GE C60 chamber pressure data shot 81 (mean pressure)
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Figure 48. Rear accelerometer data - LP1, LP2, and LP3
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Figure 51. Base pressure data - LP2 and LP3
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Figure 52. Base pressure data - LP3 spectrum analysis
71




- - - 70 ec. - 1Po

~ g - .
. - . . - .
. . « . . .
B . . . . . .
. . . . .
. - - .
- . . . . . .
‘0-0' L R N R I R R R R R I R R O S i
. . . - .
. . . . . .
- . . . .
- . - .
. . . . . .
- - . . . .
. . . - . . .
0.0 cccsvniecaanan B R R I P I M T I TR PP
. - . . .
. . - -
. . +
. .
. .
.

LP2 20.Gdveens .. 2, .. . ........5....... cveveen
BASE - ;
PRESSURE wotd... R.....

(TwRU HoLE)

LEC N I

ssesoclasessesVasons,

0.0

. . .
. . - .

. . . . -

. . . . . .

. . . . ) .
. . . - . .
. . .

.

0.0  5000.0 10000.0 $5000.0 20000.0 25000.0 30000.0 35000.0
Hertz

B00.04 «ccvceetonrnnediannns R O AR

- . . -

REAR (R A -

. .

ACCEL 500.0.4 DR RN O *e s s s e eslonssencsancosscase®rossssnletosnscsosrbessances

. . . - -

. . . .

. . - .

. - . .

- - .

. . .

. . .

. . .
400.09-----.. seeehocesns R R R R T L e

. . B .

. - .

- . . .

. . .

- . . .

. . .

. . -

200.04 . O A U
:
:
:
:
:
:
:

st s s s e s s grsr st s rprressssiper s

Py SR

0.0

- - . - . - *
. . . . . -
. . . B . .
. . . . . -
. N . . . .
. . . . o .

0.0  5000.0 40000.0 15000.0 20000.0 25000.0 30000.0 35000.0

Figure 53. Spectrum analysis - LP2 base pressure and rear acceleration

72




LP2
BASE
PRESSURE
(THRu HoLE)

LP3
REAR

ACCEL

10044 %--- - B---- ¢} _‘! .....

-
. -
.

0.0

g g g
. - -
. . - .
. . -
D .
. . .
. . . .
4004 et e e e e e e
- -
. . . .
. .
- .
. -
. .
. . . . . o
36.04.c0000.} R Y IR T I NI R S T I R AP
. . .
. . .
B . .
. . .
. . .
. . -
ao- EEEEERE CRERERIE ' B EEL I IS % s e s ettt e ecr o ate e R
. . . - -
. .
. .
. . .
. .
- .

.
P I L LN R I N B AR I A A

. . . - .
. . - . . . .
. . . N .
. - . . . .
. . . - .
. . . . . .

w»e ® e e s o

0.0  5000.0 40000.0 15000.0 a@io 25000.0 30000.0 35000.0

(_RE%_HAQZ0 - Accel. - 16 Khz - 63 to 60 msec. ~ LP3

. . . . . . .
L B R R R R T e B L L) eenen
. ‘
. . . . . . .
. .
300.04..40... P e Veaaen Cet e
.
. .
. . .
. . .
. .
. .
00.04d ... feacscssetastirracsvetsernonoas s e aeenn
. .
. .
.
. .
. .
N . .
. .
. . .
100.04 ..... cremesraans Pe v el evagntesttamocnancs
. . -
. .
. .
. .
. .
RN . . .
DU - A Tt e, R . . .
°° . SR . T . N -
. A 3 » . - . N . P’
. . . . . . .
. . . .
. . . .
. - i d -~ * -
. . - .
. . .

0.0 5000.0 10000.0 15000.0 200000 25000.0 30000.0 35000.0

Figure 54. Spectrum analysis - LP2 base pressure and LP3 rear acceleration

73



LP3

BASE
PRESSURE

(2-0 Wog)

LP3
REAR
ACCEL

0;0 5000.0 10650.0 150!;0.0 23&0;%0 250&0.0 30000.0 350;0.0 l
Moo, BAZZ0 - Accel. - 5 Khz - B3 to G0 ssec. = 1P3
400.04...... L T T T T AT A .
300.04.......4}-. . ....... ‘ ........
200.04.......8....8).... ..o il i Ceeenesnraemanatnen
00.04.....2. B2 -+ BEWS IR -3 . 2.0oo.. ,... .......

0.0

9.0 5000.0 10000.0 $5000.0 209000 25000.6 30000.0 35000.0

Figure 55. Spectruni analysis - LP3 base pressure and rear acceleration

74




CHAMBER
PRESSURE

40000.0 4

30000.0 -

P 20000.01
S

1
10000.0 4

S e

SPECTRUM
ANALYSIS

0.650 0.055 0.060 oéggs 0.070 ©0.075 0©.080

'mamm.mssummenmn;muﬁsw -

- — o
- e — . . —— —
B v . O Y - !

. — e e L R < -

0.0  5000.0 30000.0 $5000.0 2‘,’,2?,2250 25000.0 30000.0 35000.0

Figure 56. LP3 chamber pressure - gage C60 pressure and spectrum
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Figure 57. Spectrum analysis comparison - LP3 chamber and base
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Figure 60. LP4 data overlay
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Figure 67. BPA135 - pressure spectrum - LP4
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CHAMBER DATA REPCRT 2

ROUND #: 183% DATE : 11-05-1992
T.0.D. : 09:59 GUN POS: 42212
P. E. : FOSTER TITLE : AFAS

PEAK-P.S.I. : 50197
IGN.DEL (mS) : 39.46
RISE TIME (mS) : 3.25
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47500
Feange:
52504
- A
1560,
30068
bl
15663
7501
8 ~—
7500+ | | |
nS7§ f& 2% 3 58 {2

L

Figure 72. Yuma Proving Ground (YPG) chamber pressure data report - LP6
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BREECH DATA REPORT 1

ROUND #: 188¥ DATE : 11-05-1992
T.0.D. : 09:59 GUN POS: 42212
P. E. : FOSTER TITLE : AFAS
PEAK-P.S.I. : 52690
IGN.DEL (mS) : 39.73

RISE TIME (mS) : 3.14
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Figure 73. YPG breech pressure data report - LP6
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DIFFERENTIAL DATA REPORT 1 AND 2

ROUND #: 1834 DATE : 11-05-199?
T.0.D. : 09:59 GUN POS: 42212
P. E. : FOSTER TITLE : AFAS

POS. PEAK : 8%73 P.S.I.
NEG. PEAK ¢=3430 P.S.I.

Figure 74. YPG differential pressure data report - LP6
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Figure 75. LP6 channel 1 - base pressure data
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Figure 76. LP6 channel 2 - base pressure data
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50 RECESS 4KHz

B0 — Pregmrn - 4 Khy - LP6
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Figure 77. LP6 channel 11 - base pressure data
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Figure 78. LP6 channel 12 - base pressure data
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JO00RECESS 16KHz
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Figure 79. LP6 channel 4 - base pressure data

CHANNEL 4 - Base Pressure Converted to Accel @ PxA/Wt
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Figure 80. LP6 channel 4 - base pressure converted to acceleration
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16KHz

BA300 = Accderalion = K Rhe — LS
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Figure 81. LP6 channel 6 - acceleration at projectile base
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Figure 82. LP6 channel 9 - acceleration at projectile base
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Figure 83. BPCA - pressure spectrum - LP6
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Figure 84. BP120A - pressure spectrum - LP6
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Figure 85. BA300 - acceleration spectrum - LP6
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Figure 86. Measured LP8 base pressure - channel 1
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BPOA - Pressure -~ B ikhz = TRN B — W42 1. = LFB
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Figure 87. Measured LP8 base pressure - channel 2
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Figure 88. Measured LP8 base pressure - channei 3
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BPCA — Pressue — B Rhz — TRN B = 1470 T — 1P
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Figure 89. BPCA - pressure - LP8
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Figure 90. BPOA - pressure - LP8
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Figure 92. BPCA, BPOA, and BP180A - pressure - LP8
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A LEROMETER
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20000, O 1

15000. 0 -~

10000, Q o o mrewees

‘_V; 5 ooo. 0 . mtie m Ses S I A

w5000, O o o g .

0.030 0.035 0.040 0. 045 O.SSCSO 0.055 0.060 Q. 065

Figure 93. Measured LP8 acceleration

CHANNEL 7 (FORWARD ACCELEROMETER - 16 kHz)
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Figure 94. Validation of LP8 data
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Figure 95. Base pressure spectrum LP8 - channel 1
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Figure 96. Base pressure spectrum LP8 - channel 2
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NEAR PEAK PRESSURE
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Figure 97. Base pressure spectrum LP8 - channel 3
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Figure 98. Accelerometer spectrum LP8 - channel 7
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Figure 100. B200B pressure gage
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Figure 101. B200B pressure gage - LP8
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Figure 102. ACL1-B2 accelerometer data - LP8
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Figure 103. ACL1-B2 accelerometer spectrum - LP8
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Figure 104. BPOA - pressure spectrum - 52.66 msec - LLP8
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Figure 105. BPOA - pressure spectrum - 53.33 msec - LP8
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Figure 106. BPOA - pressure spectrum - 54.00 msec - LP8
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Figure 107. BPOA - pressure spectrum - 54.66 msec - LP8
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Figure 108. BPOA - pressure spectrum - 55.33 msec - LP8
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Figure 109. BPOA - pressure spectrum - 56.00 msec - LP8
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Figure 110. BPOA - pressure spectrum - 56.66 msec - LP8
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Figure 111. BPQA - pressure spectrum - 57.33 msec - LP8
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Figure 112. Doppler effect, measured frequencies
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Figure 113. Doppler effect, projectile oscillations
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